
The hierarchical domain decomposition pre-processing module
with the parallel mesh refinement function without
communication

Kohei Murotani, Shin-ichiro Sugimoto, Hiroshi Kawai, and Shinobu Yoshimura

The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
[muro kawai]@save.sys.t.u-tokyo.ac.jp, [sugimoto yoshi]@sys.t.u-tokyo.ac.jp

Summary. This paper describes a parallel fast generation method of large-scale meshes for a hierarchical domain
decomposition method implemented in the open source parallel finite element software ADVENTURE. The present
authors have newly developed a parallel algorithm such that communication table is updated and inherited in
parallel during mesh refinement after the initial communication table is generated from an initial mesh. As a result,
the generation of a refined mesh model over billions degrees of freedom (DOFs) from an initial medium-size mesh
model of about a million DOFs can be performed in a parallel computer in a short time.

Key words: Parallel mesh refinement, Hierarchical domain decomposition tool, Parallel finite element
analysis, ADVENTURE system, METIS, ParMetis.

1 Introduction

In a hierarchical domain decomposition method (HDDM), an analyzed domain is decomposed in two steps
by ParMETIS and METIS [1]. The large decomposed unit of the first hierarchy level is called a “Part”, and
a smaller unit in the decomposed “Part” (the second hierarchy level) is called a “Subdomain”. In a parallel
computer, one “Part” must be respectively assigned to one computational node, and each “Part” is further
partitioned into a number of “Subdomains”. Parallel finite element solvers developed in the ADVENTURE
project [2] employ the HDDM, but do not have a function of hierarchically decomposing domain of mesh.
Instead, we developed ADVENTURE Metis, which converts an input mesh into a hierarchically domain
decomposed mesh for the HDDM.

Using the parallel solid solver ADVENTURE Solid, various problems with hundreds of millions of
DOFs have already been solved [3] in the Earth Simulator (ES), which was the fastest supercomputer
in the world from 2002 to 2004. ADVENTURE Metis executed the domain decomposition with low
parallel performance and many integer operations in advance. The same situation would be true in
Japan’s Petaflops Supercomputer, nicknamed the “K computer”, which was recognized to attain the
world fastest performance of supercomputer, that is, a peak performance of 8.774 Petaflops in June 2011.
To fully use the performance of the “K computer”, large-scale meshes of more than tens of billions of
DOFs are required. However, it is very difficult to generate such large-scale meshes from scratch and
partition the generated meshes.

To overcome the above mentioned problems when using the HDDM solver efficiently in the Petaflops
computer, we newly developed the hierarchical domain decomposition tool named ADENTURE Metis
Ver.2, to which a parallel mesh refinement function and a communication table generation function
without communication were newly implemented. The strategy employed in the tool is in the following.
An adaptively controlled mesh of medium-size is generated at the initial stage of mesh generation. Next
the generated medium-sized mesh is uniformly refined. The first reason for employing such processes is
that the time for generating the initial mesh should be as short as possible. The second reason is that
the mesh should be finely refined in the entire domain, because nonlinear dynamic analyses are our final
target.



2 Kohei Murotani

High speed parallel mesh refinement has been actively investigated so far. Most of the investigation
has been in edge-based adaptive refinements. Ruprecht and Muller [4] developed the streaming adaptive
refinement using the tetrahedral edge-based subdivision, and Pebay et al. [5] extended both methods.

The generated mesh must have the hierarchical domain decomposition structure of two layers for the
use of HDDM. In the algorithm where tetrahedra are subdivided as [4, 5], a communication table for
sending and receiving data among computational nodes must be generated after mesh refinement. How-
ever, the generation cost of the communication table tends to be expensive. To overcome such difficulty,
the present authors have developed a parallel algorithm such that the communication table is updated
and inherited during mesh refinement after the initial communication table is generated with an initial
mesh.

2 Eight-subdivision of a tetrahedron

In ADVENTURE Metis Ver.2, a tetrahedron is subdivided into eight tetrahedra as shown in Fig. 1.

v1
v9

v4

v7

v0

v2

v1
v3

v0

v2

v1
v3

v5

v7

v6
v4

v8

v9

v0

v2

v3 v5

v5

v9

v4
v6

v6

v7

v8

v8

v5

v5

v5

v5
v9

v9

v9

v9

v4

v4

v6

v6

v7

v7v8

v8

v5

v7

v6 v4

v8

v9
v5

v7

v6 v4

v8

v9

v5

v7

v6 v4

v8

v9

Fig. 1. Subdivision of a tetrahedron into eight tetrahedrons.

The ID numbers are stored as the following recurrence formulas (1) to (5) :

{
vk+1

i = vk
i (0 ≤ i < vnk)

vk+1
vnk+i

= vnk + ek
i (0 ≤ i < enk)

(1)
ek+1
2i+j = 2ek

i + j (0 ≤ i < enk, 0 ≤ j < 2)
ek+1
2enk+3i+j

= 2enk + 3fk
i + j (0 ≤ i < fnk, 0 ≤ j < 3)

ek+1
2enk+3fnk+i

= 2enk + 3fnk + tki (0 ≤ i < tnk)
(2)

{
fk+1
4i+j = 4fk

i + j (0 ≤ i < fnk, 0 ≤ j < 4)
fk+1
4fnk+8i+j

= 4fnk + 8tki + j (0 ≤ i < tnk, 0 ≤ j < 8)
(3){

tk+1
8i+j = 8tki + j(0 ≤ i < tnk, 0 ≤ j < 8) (4)
vnk+1 = vnk + enk

enk+1 = 2enk + 3fnk + tnk

fnk+1 = 4fnk + 8tnk

tnk+1 = 8tnk

(5)

where k is the level of mesh refinements, vk
i ,ek

i ,fk
i and tki are the ID numbers of the vertex, tetrahedral

element, face and edge, respectively, for the k-th level refined mesh, and vnk,enk,fnk and tnk are the



The HDDM pre-processing module with the parallel mesh refinement function without communication 3

total numbers of vertices, tetrahedral elements, faces and edges, respectively, for the k-th level refined
mesh.

3 Communication table generation without communication

3.1 Algorithm for generating communication table using global ID number

It is ideal that communication among computational nodes is not performed to create large-scale data in
a parallel computer. This section describes an algorithm for generating the communication table without
communication. The communication table here is a correspondence relationship to send and receive data
among “Parts”.

An ID number assigned to each simplex before “Part” decomposition is defined as a “global ID
number”. An ID number assigned to each simplex in each “Part” after “Part” decomposition is defined as a
“local ID number”. A mapping from the local ID numbers in all “Parts” to the global ID numbers is defined
as the map “g”. The local ID numbers on boundaries among neighboring “Parts” are redundantly assigned
to the global ID numbers by the map “g”. Using the fact that the global ID numbers on boundaries among
neighboring “Parts” are necessarily overlapped, the communication table among “Parts” is generated.

vp→q
i is defined as the ith local vertex ID number adjacent to “Part” q in “Part” p. Similarly, vq→p

i is
defined as the ith local vertex ID number adjacent to “Part” p in “Part” q. If the number of vertices on
the boundary between “Part” p and “Part” q is np,q, let the set of the local vertex ID numbers adjacent
to “Part” q in “Part” p be {vp→q

i | 0 ≤ i < np,q}. Similarly, let the set of the local vertex ID numbers
adjacent to “Part” p in “Part” q be {vq→p

i | 0 ≤ i < np,q}. Here, if {vp→q
i | 0 ≤ i < np,q} is sorted by the

global vertex ID numbers, {vp→q
σp→q(i) | 0 ≤ i < np,q} is obtained. σp→q(i) is the sorting permutation using

the global vertex ID number in an ascending order. Similarly, {vq→p
σq→p(i) | 0 ≤ i < np,q} is also obtained.

Since the set of the global vertex ID numbers of the vertices adjacent to “Part” q in “Part” p is equal to
the set of the global vertex ID numbers of the vertices adjacent to “Part” p in “Part” q,

g(vp→q
σp→q(i)) = g(vq→p

σq→p(i)) (6)

is obtained. Equation (6) is called the communication table. It is important to create {vp→q
σp→q(i) | 0 ≤ i <

np,q} in “Part” p and {vq→p
σq→p(i) | 0 ≤ i < np,q} in “Part” q without knowing the local vertex ID numbers

in the other “Parts”. Next, consistent communication as follows using the relationship given in equation
(6) is performed. First, send data in the order corresponding to {vp→q

σp→q(i) | 0 ≤ i < np,q} in “Part” p, and
send data in the order corresponding to {vq→p

σq→p(i) | 0 ≤ i < np,q} in “Part” q. Second, each set of sent
data is exchanged for the other. Finally, each set of received data is respectively assigned to the vertices
corresponding to {vp→q

σp→q(i) | 0 ≤ i < np,q} in “Part” p and {vq→p
σq→p(i) | 0 ≤ i < np,q} in “Part” q.

3.2 Consistent updating algorithm of global ID number after mesh refinement

In ADVENTURE Metis Ver.2, since mesh refinement is performed after “Part” decomposition, a con-
sistent set of global vertex ID numbers must be assigned to newly generated vertices in all of “Parts”.
Once the consistent global vertex ID numbers are assigned, the communication table can be generated
by the method as described in Subsection 3.1. This subsection describes how to independently assign the
consistent global ID numbers in each “Part” after mesh refinement.

The local ID numbers after mesh refinement are updated as per equations (1) to (5). The updating
procedure of the global ID numbers after mesh refinement is defined as follows :{

g(vk+1
i ) = g(vk

i ) (0 ≤ i < vnk)
g(vk+1

vnk+i
) = g(vnk) + g(ek

i ) (0 ≤ i < enk)
(7){

g(ek+1
2i+j) = 2g(ek

i ) + j (0 ≤ i < enk, 0 ≤ j < 2)
g(ek+1

2enk+3i+j
) = 2g(enk) + 3g(fk

i ) + j (0 ≤ i < fnk, 0 ≤ j < 3)
(8){

g(fk+1
4i+j) = 4g(fk

i ) + j(0 ≤ i < fnk, 0 ≤ j < 4) (9)



4 Kohei Murotani
g(vnk+1) = g(vnk) + g(enk)
g(enk+1) = 2g(enk) + 3g(fnk) + g(tnk)
g(fnk+1) = 4g(fnk) + 8g(tnk)
g(tnk+1) = 8g(tnk)

(10)

where vk
i ,ek

i and fk
i are the local vertex, edge and face ID numbers in each “Part”, respectively,

g(vk
i ),g(ek

i ) and g(fk
i ) are the global vertex, edge and face ID numbers in each “Part” , respectively,

and g(vnk),g(enk),g(fnk) and g(tnk) are the total numbers of vertices, edges, faces and tetrahedral
elements in the entire domain. If the global ID numbers are updated using equations (7) to (10), the com-
munication method using the global ID number described in Subsection 3.1 is directly applied because
the consistent global ID numbers are determined independently in each computational node.

4 Large-scale mesh refinement for Pantheon model and Its Analysis

The parallel computer used in this section is the T2K in the Information Technology Center of the
University of Tokyo. As for the T2K, the cores of up to 8,192 cores of 2.3 GHz and 32 GB memory can
be used. For the purpose of comparison with results on the T2K, a single PC machine with 4 cores (Intel
Core i7-930, 2.8 GH) and with a memory of 24 GB is used as well.

In this section, a mesh with 1,506,447 DOFs and 323,804 elements generated from the CAD data of
the Pantheon released in the ADVENTURE project [2] is used as an initial mesh model. Figure 2 shows
the initial mesh, and Fig. 3 shows its fourth-level refined mesh. Table 1 is a comparison of the calculation
conditions of the HDDM and the calculation times in rank 0 for the different numbers of computational
nodes. The finite element models are the tetrahedral quadratic element models using the surface fitting
function based on finite element shape functions.

Since 8,192 computational nodes in the T2K can be used only for 24 hours, the fourth-level refined
mesh with 8,192 “Parts” and 2,000 “Subdomains” per “Part” was generated in advance on a single
PC using ADVENTURE Metis Ver.2. A self weight analysis using 8,192 computational nodes in the
T2K was performed for the fourth-level refined mesh by the HDDM-based parallel structural solver,
ADVENTURE Solid. Figure 4 shows the equivalent stress distribution calculated with the initial small
mesh, while Fig. 5 does that of the fourth-level refined mesh. Large-scale meshes like this can be easily
prepared even on a single PC in a reasonable time by using ADVENTURE Metis Ver.2.

Table 1. Calculation conditions and costs of mesh refinement for the Pantheon model.

Number of

processes
Parts

Number of

refinments
Input DOFs Output DOFs

Calculation

times (sec)

4 8192 4 1,506,447 5,359,260,867 408.576

1024 8192 4 1,506,447 5,359,260,867 21.374

8192 8192 4 1,506,447 5,359,260,867 84.540

(a) (b) (a) (b)

Fig. 2. Initial mesh. Fig. 3. Fourth-level refined mesh.



The HDDM pre-processing module with the parallel mesh refinement function without communication 5

(a) (b) (a) (b)

Fig. 4. Equivalent stress distributions of the initial mesh.
Fig. 5. Equivalent stress distributions of the fourth-level
refined mesh.

5 Conclusions and future work

ADVENTURE Metis Ver.2 has already been used for HDDM-based parallel solvers such as ADVEN-
TURE Solid and ADVENTURE Magnetic. ADVENTURE Solid together with ADVENTURE Metis
Ver.2 has succeeded in solving the problem with 5.3 billion DOFs using T2K as shown in Section 4.
Furthermore, since the number of “Parts” is flexibly set, irrespective of the number of computational
nodes, data of a number of “Parts” to be solved on parallel computers with a number of computational
nodes can be created by a single PC. That means, ADVENTURE Metis Ver.2 enables to generate a mesh
with hundreds of billions of DOFs on a single, normal-performance computer.

References

1. G. Karypis, and V. Kumar, “A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs”,
SIAM Journal on Scientific Computing, vol.20, no.1, pp.359–392, 1999.

2. Home page of ADVENTURE Project. http://adventure.q.t.u-tokyo.ac.jp
3. M. Ogino, R. Shioya, H. Kawai, and S. Yoshimura, “Seismic Response Analysis of Full Scale Nuclear Vessel

Model with ADVENTURE System on the Earth Simulator”, Journal of the Earth Simulator, vol.2, pp.41–54,
2005.

4. D. Ruprecht, and H. Muller, “A Scheme for Edge-based Adaptive Tetrahedron Subdivision”, Mathematical
Visualization, H. C. Hege, K. Polthier, editors, Springer Verlag, Heidelberg, pp.61–70, 1998.

5. P. P. Pebay, and D. C. Thompson, “Parallel Mesh Refinement Without Communication”, Proceedings 13th
International Meshing Roundtable, Willimasburg, Virginia, USA, Sandia National Laboratories, pp.437–448,
2004 .


